Wrap-up and conclusions

Emanuele Della Valle
emanuele.dellavalle@polimi.it
http://emanueledellavalle.org
Share, Remix, Reuse — Legally

- This work is licensed under the Creative Commons Attribution 3.0 Unported License.

- Your are free:
 - to Share — to copy, distribute and transmit the work
 - to Remix — to adapt the work

- Under the following conditions
 - Attribution — You must attribute the work by inserting a credits slide stating
 - These slides are partially based on “Streaming Reasoning for Linked Data 2015” by M. J-P Calbimonte, D. Dell'Aglio, E. Della Valle, M.I. Ali and A. Mileo
 http://streamreasoning.org/events/sr4ld2015

- To view a copy of this license, visit
 http://creativecommons.org/licenses/by/3.0/
Agenda

- Research question and approach
- Research challenges
- Achievements & open issues
- What's next?
- More on Stream Reasoning at ISWC 2015
Stream Reasoning

- Research question
 - is it possible to make sense in real time of multiple, heterogeneous, gigantic and inevitably noisy and incomplete data streams in order to support the decision processes of extremely large numbers of concurrent users?
Proposed Approach

- Proposed approach

DL is just an option. ASP and Bayesian nets can also fit here

-- E. Della Valle, 2015

Research Challenges

- Relation with DSMSs and CEPs
 - Just as RDF relates to data-base systems?

- Data types and query languages for semantic streams
 - Just RDF and SPARQL but with continuous semantics?

- Reasoning on Streams
 - Theory: formal semantics
 - Efficiency
 - Scalability and approximation

- Dealing with incomplete & noisy data
 - Even more than on the current Web of Data

- Distributed and parallel processing
 - Streams are parallel in nature, data stream sources are distributed, ...

- Engineering Stream Reasoning Applications
 - Development Environment
 - Integration with other technologies
 - Benchmarks as rigorous means for comparison
Achievements and open issues
Relation with DSMSs and CEPs

- **Achievement**
 - Somehow just as RDF, SPARQL, and OWL relate to data-base systems
 - Queries are registered \rightarrow opportunity for query optimizations
 - Many application requires a network of queries \rightarrow opportunity for inter-query optimizations

<table>
<thead>
<tr>
<th>DB \rightarrow Semantic Web</th>
<th>DSMS/CEP \rightarrow Semantic Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relational data \rightarrow RDF</td>
<td>Data streams \rightarrow RDF Streams</td>
</tr>
<tr>
<td>SQL \rightarrow SPARQL</td>
<td>CQL/EPL/… \rightarrow C-SPARQL/EP-SPARQL/…</td>
</tr>
<tr>
<td>Schema \rightarrow OWL</td>
<td>Schema \rightarrow OWL</td>
</tr>
</tbody>
</table>

- But with some differences
 - Queries are registered \rightarrow opportunity for query optimizations
 - Many application requires a network of queries \rightarrow opportunity for inter-query optimizations

- **Issues**
 - It is time to bring Stream Reasoning to the Web
 - Relational and RDF streams should live together on the Web and in the Stream Reasoners
Achievements and open issues

Data types for semantic streams - Achievements

- **RDF streams introduced** as new data type in the Semantic Web and Linked Data research
Achievements and open issues

Data types for semantic streams - Issues

- **Multiple notions of RDF stream** proposed
 - Ordered sequence (implicit timestamp)
 - One timestamp per triple (point in time semantics)
 - Two timestamps per triple (interval base semantics)

- **Comparison between existing approaches**

<table>
<thead>
<tr>
<th>System</th>
<th>Data item</th>
<th>Time model</th>
<th># of timestamps</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTANS</td>
<td>triple</td>
<td>Implicit</td>
<td>0</td>
</tr>
<tr>
<td>C-SPARQL</td>
<td>triple</td>
<td>Point in time</td>
<td>1</td>
</tr>
<tr>
<td>SPARQL$_{stream}$</td>
<td>triple</td>
<td>Point in time</td>
<td>1</td>
</tr>
<tr>
<td>CQELS</td>
<td>triple</td>
<td>Point in time</td>
<td>1</td>
</tr>
<tr>
<td>Sparkwave</td>
<td>triple</td>
<td>Point in time</td>
<td>1</td>
</tr>
<tr>
<td>Streaming Linked Data</td>
<td>RDF graph</td>
<td>Point in time</td>
<td>1</td>
</tr>
<tr>
<td>ETALIS</td>
<td>triple</td>
<td>Interval</td>
<td>2</td>
</tr>
</tbody>
</table>

- **Harmonization** of current proposals **ongoing** at the **W3C RSP community group**
Achievements and open issues

Query languages for semantic streams - Achievements

- **Languages for continuous querying of and event processing** on RDF streams *proposed*
- Window base selection outperforms filter base selection
- Dynamic optimization of query plans and incremental evaluation is possible
- Multiple RDF stream processor *prototypes* implemented and deployed
Achievements and open issues

Query languages for semantic streams - Issues

- **Comparison between existing approaches**

<table>
<thead>
<tr>
<th>System</th>
<th>S2R</th>
<th>R2R</th>
<th>Time-aware</th>
<th>R2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTANS</td>
<td>Based on time events</td>
<td>SPARQL update</td>
<td>Based on time events</td>
<td>Ins only</td>
</tr>
<tr>
<td>C-SPARQL Engine</td>
<td>Logical and triple-based</td>
<td>SPARQL 1.1 query</td>
<td>timestamp function</td>
<td>Batch only</td>
</tr>
<tr>
<td>SPARQL$_{stream}$</td>
<td>Logical and triple-based</td>
<td>SPARQL 1.1 query</td>
<td>no</td>
<td>Ins, batch, del</td>
</tr>
<tr>
<td>CQELS</td>
<td>Logical and triple-based</td>
<td>SPARQL 1.1 query</td>
<td>no</td>
<td>Ins only</td>
</tr>
<tr>
<td>Sparkwave</td>
<td>Logical</td>
<td>SPARQL 1.0</td>
<td>no</td>
<td>Ins only</td>
</tr>
<tr>
<td>Streaming Linked Data</td>
<td>Logical and graph-based</td>
<td>SPARQL 1.1</td>
<td>no</td>
<td>Batch only</td>
</tr>
<tr>
<td>ETALIS</td>
<td>no</td>
<td>SPARQL 1.0</td>
<td>SEQ, PAR, AND, OR, DURING, STARTS, EQUALS, NOT, MEETS, FINISHES</td>
<td>Ins only</td>
</tr>
</tbody>
</table>

- **Harmonization** of current proposals **ongoing** at the W3C RSP community group
Achievements and open issues

Query languages for semantic streams - issues

The existing engines

- adopts **different architectural** choices and it is still unclear when each choice is best
 - C-SPARQL, ETALIS, SPARQL\textsubscript{stream} are wrappers for existing systems thus they are more reliable and maintainable
 - CQELS, Streaming Linked Data, INSTANS, Sparkwave are native implementations, thus they are more efficient and offer optimizations not possible in the other system
- They have **different operational semantics**

Proposal

Achievements and open issues
Reasoning on Streams - Achievements

- **Stream Reasoning** research field is getting momentum
- Efficient **continuous reasoning algorithm** on RDF streams for RDFS, RDFS++, EL++, Answer Set Programming were proposed
- Formal semantics of Stream Reasoning is under investigation
 - Stream Reasoning with ASP
 - STARQL
 - LARS
- Multiple Stream Reasoning **proofs of concept** were implemented
Achievements and open issues

Reasoning on Streams - Issues

- **Continuous reasoning** requires more investigations
 - **Rewriting** of continuous conjunctive queries under OWL2QL entailment regime
 - **inconsistency** and **negation** in continuous reasoning tasks
 - Remove the assumption that **ontologies cannot change**
 - Extend ontological languages to allow for modelling aggregates and temporal operators

- **Logic based time-management**
 - From point in time to interval based semantics
 - More expressive specification, e.g., calendar algebra
 - Windows that logically resize at runtime

- Explore **more reasoning form beyond Q/A**, e.g., planning
Achievements and open issues
Dealing with incomplete & noisy data

- Data streams are incomplete and noisy!
- Achievements
 - **probabilistic ASP** (see morning slides)
 - Combining **deductive and inductive Stream Reasoning**

- **Issues**
 - More research required!
Achievements and open issues

Distributed and parallel processing

- Data streams are **parallel and distributed** in nature!

- Achievements
 - Active Field of research
 - Chang Liu, Jacopo Urbani, Guilin Qi: Efficient RDF stream reasoning with graphics processing units (GPUs). WWW (Companion Volume) 2014: 343-344

- Issues
 - More research required!
Achievements

- Deployments for
 - semantic sensor networks
 - social media analytics
 - fusions of those above
- Multiple benchmarks proposed
 - SRbench, CSRbech
 - LSbench
 - CityBench

Issues

- It is still unclear when and where it is convenient to adopt Stream Reasoning technologies
- Benchmarks KPI too focused on throughput; correctness and memory allocation cost, too
- Lack of an community shared infrastructures to run repeatable, reproducible, comparable experiments on
Achievements and open issues

Wrap-up

- Data types and query languages for semantic streams
 - Notion of RDF stream
 - Languages for continuous querying
 - Prototypes
 - Standardization

- Reasoning on RDF streams
 - Theory
 - Algorithms
 - Prototypes

- Dealing with incomplete & noisy data
 - Theory
 - Algorithms
 - Prototypes

- Engineering Stream Reasoning Applications
 - Deployments
 - Benchmarks

http://streamreasoning.org/events/sr4ld2015
What's next? order matters!

- Observation: order reflects recency, relevance, trustability ...

<table>
<thead>
<tr>
<th>Types of orders</th>
<th>Combinations</th>
<th>Continuous top-k Q/A</th>
<th>Order-aware reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recency</td>
<td>Top-k Q/A</td>
<td>Top-k Reasoning</td>
<td></td>
</tr>
<tr>
<td>Indexes</td>
<td>DSMS/CEP</td>
<td>Stream reasoning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Traditional solutions</td>
<td>Scalable reasoning</td>
<td></td>
</tr>
</tbody>
</table>

No Yes

Semantic Technologies

http://streamreasoning.org/events/sr4ld2015
More on Stream Reasoning at ISWC 2015

- Monday afternoon - **OrdRing 2015**
 - 4th International *Workshop* on Ordering and Reasoning
 - Keynotes by
 - O. Özçep: "Models of High-Level Declarative Stream Processing".
 - A. Bernstein: "Semantic Stream Processing: Navigating the Chasm between the Scylla of Practical Applications and the Charybdis of Theoretical Approaches"

- Monday – **RSP Community Face-to-face meeting**
 - In the last part of OrdRing 2015
 - In the evening after the workshops
More on Stream Reasoning at ISWC 2015

- **Thursday afternoon – Main Conference Papers**
 - M.I. Ali, et al. CityBench: A Configurable Benchmark to Evaluate RSP Engines using Smart City Datasets

- **Tuesday evening – Poster and Demos**
 - E. Kharlamov et al. Semantic Access to Siemens Streaming Data: the Optique Way
 - A. Mauri et al. Where are the RDF Streams?: On Deploying RDF Streams on the Web of Data with TripleWave
 - M. knuth et al. The DBpedia Events Dataset
Wrap-up and conclusions

Emanuele Della Valle
eMANUELE.DELLAVALLE@POLIMI.IT
http://emanueledellavalle.org