Stream Reasoning
For Linked Data
M. Balduini, J-P Calbimonte, O. Corcho, D. Dell'Aglio, and E. Della Valle
http://streamreasoning.org/events/sr4ld2014

Wrap-up and conclusions
Emanuele Della Valle
emanuele.dellavalle@polimi.it
http://emanueledellavalle.org
Share, Remix, Reuse — Legally

- This work is licensed under the Creative Commons Attribution 3.0 Unported License.

- Your are free:
 - to Share — to copy, distribute and transmit the work
 - to Remix — to adapt the work

- Under the following conditions
 - Attribution — You must attribute the work by inserting
 - “[source http://streamreasoning.org/events/sr4ld2014]” at the end of each reused slide
 - a credits slide stating
 - These slides are partially based on “Streaming Reasoning for Linked Data 2014” by M. Balduini, J-P Calbimonte, O. Corcho, D. Dell’Aglio, and E. Della Valle, http://streamreasoning.org/events/sr4ld2013

- To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/
Agenda

- Revisiting the research challenges
 - Relation with DSMSs and CEPs
 - Reasoning on RDF streams
 - Dealing with incomplete & noisy data
 - Engineering Stream Reasoning Applications

- What's next?

- More on Stream Reasoning at ISWC 2013
Research Challenges

- Relation with DSMSs and CEPs
 - Just as RDF relates to data-base systems?

- Data types and query languages for semantic streams
 - Just RDF and SPARQL but with continuous semantics?

- Reasoning on Streams
 - Theory: formal semantics
 - Efficiency
 - Scalability and approximation

- Dealing with incomplete & noisy data
 - Even more than on the current Web of Data

- Distributed and parallel processing
 - Streams are parallel in nature, data stream sources are distributed, ...

- Engineering Stream Reasoning Applications
 - Development Environment
 - Integration with other technologies
 - Benchmarks as rigorous means for comparison
Revisiting the research challenges
Relation with DSMSs and CEPs

Achievement

- Somehow just as RDF, SPARQL, and OWL relate to data-base systems

<table>
<thead>
<tr>
<th>DB → Semantic Web</th>
<th>DSMS/CEP → Semantic Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relational data → RDF</td>
<td>Data streams → RDF Streams</td>
</tr>
<tr>
<td>SQL → SPARQL</td>
<td>CQL/EPL/… → C-SPARQL/EP-SPARQL/…</td>
</tr>
<tr>
<td>Schema → OWL</td>
<td>Schema → OWL</td>
</tr>
</tbody>
</table>

- But with some differences
 - Queries are registered → opportunity for query optimizations
 - Many application requires a network of queries → opportunity for inter-query optimizations

Issues

- It is time to bring Stream Reasoning to the Web
 - Volatile URIs
 - Serialization of RDF streams
 - Protocols: HTTP, Web sockets
Revisiting the research challenges

Data types for semantic streams - Achievements

- **RDF streams** introduced as new data type in the Semantic Web and Linked Data research
- **W3C RDF stream processor community group started**

 http://www.w3.org/community/rsp/
Multiple notions of RDF stream proposed

- Ordered sequence (implicit timestamp)
- One timestamp per triple (point in time semantics)
- Two timestamps per triple (interval base semantics)

Comparison between existing approaches

<table>
<thead>
<tr>
<th>System</th>
<th>Data item</th>
<th>Time model</th>
<th># of timestamps</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTANS</td>
<td>triple</td>
<td>Implicit</td>
<td>0</td>
</tr>
<tr>
<td>C-SPARQL</td>
<td>triple</td>
<td>Point in time</td>
<td>1</td>
</tr>
<tr>
<td>SPARQLstream</td>
<td>triple</td>
<td>Point in time</td>
<td>1</td>
</tr>
<tr>
<td>CQELS</td>
<td>triple</td>
<td>Point in time</td>
<td>1</td>
</tr>
<tr>
<td>Sparkwave</td>
<td>triple</td>
<td>Point in time</td>
<td>1</td>
</tr>
<tr>
<td>Streaming Linked Data</td>
<td>RDF graph</td>
<td>Point in time</td>
<td>1</td>
</tr>
<tr>
<td>ETALIS</td>
<td>triple</td>
<td>Interval</td>
<td>2</td>
</tr>
</tbody>
</table>

More investigation is required to agree on an RDF stream model
Languages for continuous querying of and event processing on RDF streams proposed

Window base selection outperforms filter base selection

Dynamic optimization of query plans and incremental evaluation is possible

Multiple RDF stream processor prototypes implemented and deployed

W3C RDF stream processor community group started

http://www.w3.org/community/rsp/
Different syntax for S2R operator
Semantics of query languages is similar, but not identical
Lack of R2S operator in some cases
Different support for time-aware operators
Comparison between existing approaches

<table>
<thead>
<tr>
<th>System</th>
<th>S2R</th>
<th>R2R</th>
<th>Time-aware</th>
<th>R2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTANS</td>
<td>Based on time events</td>
<td>SPARQL update</td>
<td>Based on time events</td>
<td>Ins only</td>
</tr>
<tr>
<td>C-SPARQL Engine</td>
<td>Logical and triple-based</td>
<td>SPARQL 1.1 query</td>
<td>timestamp function</td>
<td>Batch only</td>
</tr>
<tr>
<td>SPARQL_stream</td>
<td>Logical and triple-based</td>
<td>SPARQL 1.1 query</td>
<td>no</td>
<td>Ins, batch, del</td>
</tr>
<tr>
<td>CQELS</td>
<td>Logical and triple-based</td>
<td>SPARQL 1.1 query</td>
<td>no</td>
<td>Ins only</td>
</tr>
<tr>
<td>Sparkwave</td>
<td>Logical</td>
<td>SPARQL 1.0</td>
<td>no</td>
<td>Ins only</td>
</tr>
<tr>
<td>Streaming Linked Data</td>
<td>Logical and graph-based</td>
<td>SPARQL 1.1 query</td>
<td>no</td>
<td>Batch only</td>
</tr>
<tr>
<td>ETALIS</td>
<td>no</td>
<td>SPARQL 1.0</td>
<td>SEQ, PAR, AND, OR, DURING, STARTS, EQUALS, NOT, MEETS, FINISHES</td>
<td>Ins only</td>
</tr>
</tbody>
</table>

Is it time to converge on a standard?
The existing engines

- adopts **different architectural** choices and it is still unclear when each choice is best
 - C-SPARQL, ETALIS, SPARQL\textsubscript{stream} are wrappers for existing systems thus they are more reliable and maintainable
 - CQELS, Streaming Linked Data, INSTANS, Sparkwave are native implementations, thus they are more efficient and offer optimizations not possible in the other system

- They have **different operational semantics**
 - for more information check out the ISWC 2013 evaluation track for "On Correctness in RDF stream processor benchmarking" by Daniele Dell’Aglio, Jean-Paul Calbimonte, Marco Balduini, Oscar Corcho and Emanuele Della Valle
Stream Reasoning research field is getting momentum

Efficient **continuous reasoning algorithm** on RDF streams for RDFS, RDFS++, EL++, Answer Set Programming were proposed

Formal semantics of Stream Reasoning is under investigation
- Stream Reasoning with ASP
- STARQL
- TU-Wien's Stream Reasoning Framework

Multiple Stream Reasoning **proofs of concept** were implemented
Issues

- Theory still largely based on one-time semantics
 - Continuous reasoning for the following topics requires more investigations
 - Continuous conjunctive queries under OWL2QL entailment regime
 - Union of Continuous conjunctive queries under OWL2QL entailment regime
 - Continuous queries including negation (in all its possible forms)
 - Continuous recursive querying under expressive entailment regimes
 - Modelling in the ontology aggregates and functions
 - Logic based time-management
 - More expressive specification, e.g., calendar algebra
 - Windows that logically resize at runtime

- Interesting attempts to provide a comprehensive theory for stream reasoning are undergoing
- Lack of prototypes that go beyond proof of concept
- Explore more reasoning form beyond Q/A
Data streams are incomplete and noisy!

Achievements
- Reasoning can help dealing with incompleteness
- Initial works on inductive stream reasoning explored relation learning as a way to cope with those problematic aspects
- Recent work on probabilistic answer set programming

Issues
- More research required!
Revisiting the research challenges
Distributed and parallel processing

- Data streams are parallel and distributed in nature!

- Achievements
 - Active Field of research
 - Chang Liu, Jacapo Urbani, Guilin Qi: Efficient RDF stream reasoning with graphics processingunits (GPUs). WWW (Companion Volume) 2014: 343-344

- Issues
 - More research required!
Revisiting the research challenges
Engineering Stream Reasoning Applications

- **Achievements**
 - Deployments for
 - semantic sensor networks
 - social media analytics
 - City Data Fusion
 - Multiple benchmarks proposed

- **Issues**
 - It is still unclear when and where it is convenient to adopt Stream Reasoning solutions
 - Benchmarks too focused on throughput; correctness and memory allocation cost, too
Revisiting the research challenges
Wrap-up

- Data types and query languages for semantic streams
 - Notion of RDF stream
 - Languages for continuous querying
 - Prototypes
 - Standardization

- Reasoning on RDF streams
 - Theory
 - Algorithms
 - Prototypes

- Dealing with incomplete & noisy data
 - Theory
 - Algorithms
 - Prototypes

- Engineering Stream Reasoning Applications
 - Deployments
 - Benchmarks
Observation: order reflects recency, relevance, trustability ...

<table>
<thead>
<tr>
<th>Types of orders</th>
<th>Combinations</th>
<th>Order matters reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recency</td>
<td>DSMS/CEP</td>
<td>Stream reasoning</td>
</tr>
<tr>
<td>Indexes</td>
<td>Traditional solutions</td>
<td>Scalable reasoning</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

More on Stream Reasoning at ISWC 2013

- Monday Morning - **OrdRing 2014**
 - 3rd International *Workshop* on Ordering and Reasoning

- Monday – **RSP Community Face-to-face meeting**
 - In the last part of OrdRing 2014
 - In the evening after the workshops

- Thursday afternoon – **Main Conference Papers**
 - Albin Ahmeti, Diego Calvanese and Axel Polleres. *Updating RDFS ABoxes and TBoxes in SPARQL*
 - Javier D. Fernández, Alejandro Llaves and Oscar Corcho *Efficient RDF Interchange (ERI) Format for RDF Data Streams*
Wrap-up and conclusions

Emanuele Della Valle
emanuele.dellavalle@polimi.it
http://emanueledellavalle.org